• 首页 » 电影 » 纪录片 » 大汉风之韩信点兵在线点播迅雷下载
  • 大汉风之韩信点兵
    大汉风之韩信点兵
    主演:胡军,肖荣生,杨恭如,吴倩莲
    类型:剧情,历史,古装,记录,记录片,纪录片
    相关搜索:大汉风之韩信点兵 电影 - 大汉风之韩信点兵免费观看 - 大汉风之韩信点兵月姬结局 - 大汉风之韩信点兵是哪一集 - 韩信点兵的故事 - 大汉风之韩信点兵电影在线播放网 - 大汉风之韩信点兵 - 韩信点兵多多益善 -
    导演:卫翰韬
    地区:中国大陆
    年份:未知
    语言:汉语普通话
    备注:超清
    • 高速云播放
    • 高速云M3U8

    倒序↓顺序↑

    汉高祖刘邦曾问大将韩信:“你看我能带多少兵?”韩信斜了刘邦一眼说:“你顶多能带十万兵吧!”汉高祖心中有三分不悦,心想:你竟敢小看我!“那你呢?”韩信傲气十足地说:“我呀,当然是多多益善啰!”刘邦心中又添了三分不高兴,勉强说:“将军如此大才,我很佩服。现在,我有一个小小的问题向将军请教,凭将军的大才,答起来一定不费吹灰之力的。”韩信满不在乎地说:“可以可以。”刘邦狡黠地一笑,传令叫来一小队士兵隔墙站队,刘邦发令:“每三人站成一排。”队站好后,小队长进来报告:“最后一排只有二人。”“刘邦又传令:“每五人站成一排。”小队长报告:“最后一排只有三人。”刘邦再传令:“每七人站成一排。”小队长报告:“最后一排只有二人。”刘邦转脸问韩信:“敢问将军,这队士兵有多少人?”韩信脱口而出:“二十三人。”刘邦大惊,心中的不快已增至十分,心想:“此人本事太大,我得想法找个岔子把他杀掉,免生后患。”一面则佯装笑脸夸了几句,并问:“你是怎样算的?”韩信说:“臣幼得黄石公传授《孙子算经》,这孙子乃鬼谷子的弟子,算经中载有此题之算法,可用现代语言这样表述: “一个正整数,被3除时余2,被5除时余3,被7除时余2,如果这数不超过100,求这个数。”拓展资料:韩信(约公元前231年-公元前196年),汉族,淮阴(原江苏省淮阴县,今淮阴区)人,西汉开国功臣,中国历史上杰出的军事家,与萧何、张良并列为汉初三杰。早年家贫,常从人寄食。秦末参加反秦斗争投奔项羽,后经夏侯婴推荐,拜治粟都尉,未得到重用。萧何向刘邦保举韩信,于是,刘邦拜韩信为大将军。韩信对刘邦分析了楚汉双方的形势,举兵东向,三秦可以夺取。刘邦采纳了这一建议,立即作了部署,很快占取了关中。之后,他又北上降服了燕国。汉四年,韩信被拜为相国,率兵击齐,攻下临淄,并在潍水全歼龙且率领援齐的二十万楚军。于是,刘邦遣张良立韩信为齐王,次年十月,又命韩信会师垓下,围歼楚军,迫使项羽自刎。汉朝建立后解除兵权,徙为楚王。"韩信是中国军事思想"谋战"派代表人物,被后人奉为"兵仙"、"战神"。"王侯将相"韩信一人全任。"国士无双"、"功高无二,略不世出"是楚汉之时人们对其的评价。作为统帅,他率军出陈仓、定三秦、擒魏、破代、灭赵、降燕、伐齐,直至垓下全歼楚军,无一败绩,天下莫敢与之相争;作为军事理论家,他与张良整兵书,并著有兵法三篇 。



    韩信点兵

    中国剩余定理 民间传说着一则故事——“韩信点兵”。 秦朝末年,楚汉相争。一次,韩信将1500名将士与楚王大将李锋交战。苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。当行至一山坡,忽有后军来报,说有楚军骑兵追来。只见远方尘土飞扬,杀声震天。汉军本来已十分疲惫,这时队伍大哗。韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。于是士气大振。一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。交战不久,楚军大败而逃。 首先我们先求5、9、13、17之最小公倍数9945(注:因为5、9、13、17为两两互质的整数,故其最小公倍数为这些数的积),然后再加3,得9948(人)。 在一千多年前的《孙子算经》中,有这样一道算术题: “今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?”按照今天的话来说:一个数除以3余2,除以5余3,除以7余2,求这个数. 这样的问题,也有人称为“韩信点兵”.它形成了一类问题,也就是初等数论中解同余式.这类问题的有解条件和解的方法被称为“中国剩余定理”,这是由中国人首先提出的. ① 有一个数,除以3余2,除以4余1,问这个数除以12余几? 除以3余2的数有: 2, 5, 8, 11,14, 17, 20, 23…. 它们除以12的余数是: 2,5,8,11,2,5,8,11,…. 除以4余1的数有: 1, 5, 9, 13, 17, 21, 25, 29,…. 它们除以12的余数是: 1, 5, 9, 1, 5, 9,…. 一个数除以12的余数是唯一的.上面两行余数中,只有5是共同的,因此这个数除以12的余数是5. 如果我们把①的问题改变一下,不求被12除的余数,而是求这个数.很明显,满足条件的数是很多的,它是 5+12×整数, 整数可以取0,1,2,…,无穷无尽.事实上,我们首先找出5后,注意到12是3与4的最小公倍数,再加上12的整数倍,就都是满足条件的数.这样就是把“除以3余2,除以4余1”两个条件合并成“除以12余5”一个条件.《孙子算经》提出的问题有三个条件,我们可以先把两个条件合并成一个.然后再与第三个条件合并,就可找到答案. ②一个数除以3余2,除以5余3,除以7余2,求符合条件的最小数. 先列出除以3余2的数: 2, 5, 8, 11, 14, 17, 20, 23, 26,…, 再列出除以5余3的数: 3, 8, 13, 18, 23, 28,…. 这两列数中,首先出现的公共数是8.3与5的最小公倍数是15.两个条件合并成一个就是8+15×整数,列出这一串数是8, 23, 38,…,再列出除以7余2的数 2, 9, 16, 23, 30,…, 就得出符合题目条件的最小数是23. 事实上,我们已把题目中三个条件合并成一个:被105除余23. 那么韩信点的兵在1000-1500之间,应该是105×10+23=1073人 中国有一本数学古书「孙子算经」也有类似的问题:「今有物,不知其数,三三数之,剩二,五五数之,剩三,七七数之,剩二,问物几何?」 答曰:「二十三」 术曰:「三三数之剩二,置一百四十,五五数之剩三,置六十三,七七数之剩二,置三十,并之,得二百三十三,以二百一十减之,即得。凡三三数之剩一,则置七十,五五数之剩一,则置二十一,七七数之剩一,则置十五,即得。」 孙子算经的作者及确实著作年代均不可考,不过根据考证,著作年代不会在晋朝之后,以这个考证来说上面这种问题的解法,中国人发现得比西方早,所以这个问题的推广及其解法,被称为中国剩余定理。中国剩余定理(Chinese Remainder Theorem)在近代抽象代数学中占有一席非常重要的地位。 韩信被贬淮阴侯时高祖找他聊天 高祖说:韩信你说寡人我能带多少兵。 韩信说:10万绝对不能超过10万。高祖又说:你呢。韩信说:韩信点兵 多多益善. 高祖说:那你不是比我还厉害吗,那你为什么会被寡人抓到呢。韩信说:皇上您是将之将 我是兵之将 当然不如陛下您。